
Parallel Dedicated Hardware Devices
for Heterogeneous Computations

Alessandro Marongiu

CASPUR
Piazzale Aldo Moro 5
00185 Rome (Italy)
+39 06 3048 4004

marongiu@die.ing.uniroma1.it

Paolo Palazzari
ENEA – HPCN Project

Casaccia Research Centre
P.O. Box 2400 00100 Rome (Italy)

+39 06 3048 3167

palazzari@casaccia.enea.it

Vittorio Rosato§
ENEA – HPCN Project

Casaccia Research Centre
P.O. Box 2400 00100 Rome (Italy)

+39 06 3048 4825

rosato@casaccia.enea.it

ABSTRACT
We describe a design methodology which allows a fast design and
prototyping of dedicated hardware devices to be used in
heterogeneous computations. The platforms used in
heterogeneous computations consist of a general-purpose COTS
architecture which hosts a dedicated hardware device; parts of the
computation are mapped onto the former, parts onto the latter, in a
way to improve the overall computation efficiency. We report the
design and the prototyping of a FPGA-based hardware board to be
used in the search of low-autocorrelation binary sequences. The
circuit has been designed by using a recently developed Parallel
Hardware Generator (PHG) package which produces a
synthesizable VHDL code starting from the specific algorithm
expressed as a System of Affine Recurrence Equations (SARE).
The performance of the realized devices has been compared to
those obtained on the same numerical application on several
computational platforms.

General Terms
Algorithms, Performance, Design, Theory.

Keywords
Dedicated Hardware Device, Systems of Affine Recurrence
Equations, Low-Autocorrelation Binary Sequences.

1. INTRODUCTION
Processors used in general purpose platforms are suitably

designed to efficiently execute 32/64 bit floating/fixed point
numerical operations and contain complex memory hierarchies to
hide the large memory latency. General purpose commodity-off-
the-shelf (COTS) architectures are often deployed with a very low
efficiency when the computation does not involve standard
numerical operations, as in the case of 1-bit computations or
string processing. Functional units and data bus bandwidth are not

fully exploited due to the execution of simple operations
involving not standard numerical (or character) data represented
with few bits. The partial inadequacy of COTS platforms to
sustain high computational efficiency on specific class of
applications has fostered a renewed interest in the design of
dedicated hardware devices, purposely realized to cope with the
algorithmic complexity inherent to the cited classes of numerical
processing [1]. A pioneering example of this approach was given
by the Connection Machine CM-1[2], a MPP SIMD system based
on 1-bit processors, which had very high efficiency on image
processing and, conversely, very poor performance on numerical
processing. In order to combine efficiency on both the numerical
and not-numerical applications, some platforms use COTS
processors boosted by custom chips. The same architectural
approach, at the chip level, has been followed by the Cray SV1
designers which embedded, within the microprocessor core, both
a vector floating point unit and a Bit Matrix Multiply (BMM) unit
devoted to perform some basic bit level matrix operations [3].

We propose a more general approach where we attempt to
increase the computational efficiency of the architectures in the
tasks where COTS components fail to achieve acceptable
sustained performances. We have thus introduced a novel
methodology [4] for rapidly designing and prototyping dedicated
hardware devices which realize specific computational tasks and
can be easily linked to COTS platforms. The result of such
assembly is an heterogeneous architecture composed by a COTS
platform linked to one or more dedicated hardware devices. The
computational codes running on heterogeneous platform are thus
composed of an usual software part and one (or more) sections
which are directly mapped on the dedicated devices. In order to
produce, at reasonable costs, a custom dedicated hardware, an
interesting trade-off between (expensive) custom silicon and
(cheap) integration of COTS components is given by the FPGA
(Field Programmable Gate Array) technology. This technology, to
date, allows to implement complex circuits (up to 2 million logic
gates) on one chip. These circuits can be designed, simulated and
prototyped, by using powerful and versatile development tools
(like, e.g., the Synopsys FPGA Express, the Xilinx Foundation
Express, the Altera MaxPlusII). They can be hosted, as dedicated
computational booster, by a COTS processor. A further property
of the FPGA technology is its re-programmability, i.e. the
possibility of reusing the same hardware support to implement a
different circuit which performs a different computation. The re-

© 2001 Association for Computing Machinery. ACM acknowledges that this contri-
bution was authored or co-authored by a contractor or affiliate of the Government of

§ also Istituto Nazionale di Fisica della Materia (INFM), Unità di Ricerca Roma I.

. Italy. As such, the Government retains a nonexclusive, royalty-free right to publish

or reproduce this article, or to allow others to do so, for Government purposes only.

SC2001 November 2001, Denver © 2001 ACM 1-58113-293-X/01/0011 $5.00

configuration operation can be performed in a very short time (of
the order of tens of milliseconds), thus leading this technology
suited to host, in the same hardware support, different types of
specialized calculations [5-6].

In order to give a short overview about projects on
configurable computing, we recall 1) the Cameron Project (see
http://www.cs.colostate.edu/cameron) in which a framework to
automatically compile C programs onto programmable devices
was developed, 2) the NAPA architecture [7] with the NAPA C
compiler [8] which allows the partitioning of applications
between fixed instruction processors and configurable
coprocessors, 3) the DEFACTO project (see
http://www.isi.edu/asd/defacto/) in which, starting from C or
MATLAB specifics and using the SUIF compiler
(http://suif.stanford.edu/) to extract the parallelism from the
applications, the application is mapped onto a target Hardware
Description Language which will be compiled onto a
programmable device. A detailed review on configurable
computing can be found in [9].

To date, there is still a relevant gap between the attainable
performances of COTS and FPGA devices. FPGA's, in fact, are
still constrained to a clock speed ranging from a few tens up to
100 MHz. This limitation, however, can be overridden by a wise
design of the circuit, by exploiting as much as possible the
parallelism inherent to the specific computation to be mapped.
The use of dedicated hardware devices is the key ingredient to
realize heterogeneous architectures for heterogeneous computing
[10]. In heterogeneous computing, the algorithm is partitioned: a
part is implemented on a COTS-based architecture with the usual
high level programming languages, a part allotted to the dedicated
hardware device(s) performing the part(s) of the algorithm which
does not fit the COTS architecture. In most cases, the exploitation
of the algorithm parallelism into the circuit design allows to attain
remarkable performances.

In this work we stress the potentiality of our methodology to
design components for heterogeneous platforms. As a test-case,
we present the design of a dedicated hardware device, based on
the FPGA technology, designed to be used in the optimization
problem of the search of low-autocorrelation binary sequences
(LABS) [11-13]. This problem, of relevance in communication
technology, involves a computationally heavy bit-level processing
and, as we will show in detail, it is not suited to be efficiently
mapped onto COTS processors. From the computational point of
view, this task requires the use of an optimization technique
where the target function is represented by the sum of the square
of all the string autocorrelation values. The design of the
presented device has been automatically generated by using the
automatic Parallel Hardware Generator (PHG) package [4,14]
which is able to produce a synthesizable VHDL from the C-code
specifying the computation. The algorithm to be implemented on
the special purpose parallel architecture is firstly described in an
high level language by means of a set of recurrence equations.
Then, the PHG, based on the high level synthesis methodology
developed by two of the authors and extensively described in
[4,14], produces the VHDL code which is subsequently processed
with usual electronic CAD tools and implemented on the FPGA
support. The layout of the automatic PHG is briefly recalled in
Section 2. Section 3 describes the LABS problem. Sections 4
gives the rationale to use FPGA to implement specialized devices

in specific computational tasks, Sections 5 and 6 describe the
hardware design. Section 7 reports the resulting performance and
a comparison with those arising from the use of state-of-the-art
COTS processors.

2. The PHG package
The automatic Parallel Hardware Generator (PHG) package

has been developed in ENEA (Italian Agency for New
Technology, Energy and Environmental studies) by two of the
authors in the framework of the HADES project (HArdware
DEsign for Scientific applications, see, e.g.,
www.enea.it/hpcn/moshpce/hlsynth1e.html). The PHG theoretical
framework is described in [9] while the detailed theory is reported
in [4].

SIMPLE
Compiler

Allocation
&

Scheduling

VHDL
Generator

SARE
Description

Circuit
Description

VHDL
Description

FPGA
Compiler

+
Xilinx Flow Engine

Figure 1. Layout of the design flow. The PHG package
contains the SIMPLE compiler, the Allocation and Scheduling
Module, the VHDL Generator.

PHG produces a synthesizable VHDL [15] starting from high
level specifications given by means of a System of Affine
Recurrence Equations (SARE) [16-18]. The SARE is specified
through the SIMPLE (Sare IMPLEmentation) language. Details
on the SIMPLE language can be found in [4,19].

In order to achieve the final circuit description, PHG
performs the following steps (figure 1):

− parsing of the SARE describing the algorithm to be
implemented through the SIMPLE compiler and generation
of the intermediate format;

− automatic extraction of parallelism by allocating and
scheduling the computations through a processor-time
mapping [4]. The result of the mapping process is
represented by an integer unimodular matrix derived through
an optimization process [20]. This step produces the
architecture of the system expressed as a set of
interconnected functional units (data path) managed by a
control Finite State Machine (FSM) (data path controller)

which enforces the scheduling;

− generation of the synthesizable VHDL representing the
architecture determined in the previous step.

The VHDL code is then synthesized through the standard
Electronic Design Automation (EDA) tools. We used the
Synopsys FPGA compiler II to produce the optimized netlist and
the Xilinx Foundation Express 3.1 to place and route it into the
target FPGA).

3. The Low Auto-Correlation Binary String
Problem and the Parallel Tempering
Optimization Strategy.

Let us refer to binary strings s of length N, namely s = {si}
(i = 1,2,…,N) defined over the binary alphabet {-1,+1}. The Low
Auto-Correlation Binary String problem concerns with the search
of strings characterized by the lowest possible autocorrelation Hk

 Hk(s) = ∑ (1)
−

=
+

kN

i
kii ss

1

for all lags k [11-13].

The LABS problem arises from the area of digital
communication. In fact, LABS's can be used to generate efficient
codes for error correction and robust procedures for
communication synchronization. The problem of finding LABS's
is usually tackled by using an efficient optimization strategy
which minimizes the cost function obtained by cumulating the
square of all the autocorrelation lags Hk(s):

 H(s) = ∑ (2) ∑∑
= =

−

=
+ =












N

k

N

k
k

kN

i
kii Hss

1 1

2
2

1

Due to its complexity, optimization heuristics like Genetic
Algorithms (GA) [21], Simulated Annealing (SA) [22,23] or
others are used to minimize H(s).

We have used, in this work, that proposed by Marinari and
Parisi [24] (known as "Parallel Tempering", PT hereafter) as it has
been shown to give better results, in this specific problem, than
the other heuristics previously cited. Let H(s) indicate the energy
of the system in the state configuration s. In the SA case, the
algorithm generates a series of configurations si with a Boltzmann
probability distribution i.e.

 p(s) = e (3))(sHβ−

where β is the usual Boltzman factor 1/kT. Each time that the T
value is changed the system is driven out of equilibrium. With a
usual Monte Carlo (MC) scheme, the system is brought all along
the configuration space; high T moves allow the system to take
over energy barriers. When the system is brought back to T = 0,
the system should, in principle, visit the local minimum
configuration. The repeated application of the Monte Carlo
sampling will allow the system to visit several local minima.
From the algorithmic point of view, the MC search is performed
by generating a new point x'∈Xn (Xn being the search space) via
the perturbing function GN(x) which receives a point x∈Xn and

returns the new point close (according to some predefined metric)
to x. The pseudo-code for the Monte Carlo algorithm is shown in
figure 2, where NS - the number of transitions attempted - is a
linearly increasing function of the cardinality of the searching
space.

/* Monte Carlo cycle at temperature T, MC(T) */
for i=1 to NS
x’ = GN(x)
accept = false
if f(x’) < f(x) then
accept = true

else if exp((f(x)-f(x’))/T) > random(0,1) then
accept = true

end if
if accept then x = x’

end for
/*end of Monte Carlo cycle at temp. T, MC(T)*/

Figure 2: Schematic layout of the code describing a Monte
Carlo Sampling.

input
M replicas of MC
temperature values Ti for each MC

output
x* | f(x*)<= f(x) ∀x generated

begin
for i=1 to M x[i] = random
while not stop_condition
for i=1 to M execute MC(Ti)
for i=1 to M-1 do
swap = false;
if f(x[i+1])<f(x[i]) then
swap = true

else if exp((1/Ti+1-1/Ti)*(f(x[i+1])-f(x[i]))
<random(0,1) then

swap = true
end if
if swap then swap(x[i+1],x[i])
/* x[i] becomes the solution for MC

at temperature Ti+1 and x[i+1] becomes
the solution for MA at temperature Ti*/endfor

endwhile
end

Figure 3: Pseudo-code of the PT algorithm.

PT algorithm is based on a set of M replicas of MC cycles at
different temperatures. The number of temperatures and their
values Ti are chosen, as described in [11], so that:

− all the solutions x have a significant probability to be
generated at least in one MC replica, i.e.
∀ x ∈ Xn ∃ Ti | P(f(x),Ti) > pT, being P(f(x),Ti) the Boltzman
distribution at temperature Ti and pT a threshold probability.
The previous condition implies that the temperature ranges
from T = 0 to T = ∞;

− given two successive temperatures Ti and Ti+1, there is a
significant number of solutions for which the above
expression holds for both the temperatures; this implies that

the replica temperatures should display significant
superposition in the probability distribution of the
corresponding states.

The pseudo-code of the PT algorithm is shown in figure 3.

4. Rationale to develop specialized HW to
solve the LABS problem

Performances of general purpose processors are usually
limited by the sustainable memory bandwidth as processors are
getting faster more quickly than the access rate to memory [25].
This produces a reduction of the available theoretical CPU
performances being the memory bandwidth of the system the
rate-limiting step. A processor able to sustain NI
instructions/second can sustain such a computational speed if and
only if the memory is fast enough to supply the requested
operands and to store the produced results. In such a case, the
memory bandwidth constitutes the rate-limiting factor for an
efficient utilization of the computing resources. In fact, due to the
technological trend of microprocessors architectures, poor
utilization of memory bandwidth generates a severe under-use of
computational resources: the more memory bandwidth is wasted,
the worst is the global processor utilization. This is just the case
of the LABS problem, which we will discuss in some details.

Let us consider the system bus traffic generated by the
algorithm which computes eq.(2). It is possible to recognize four
types of operations:

1. multiplication of two string elements si and si+k (elementary
product): in such a case the operands are represented with 1
bit;

2. accumulation of the elementary products yk = :

in such a case, the result y
∑ −

= +
kN

i kii ss
1

k is contained in the interval
[-N,N]. Therefore ny = (log2N + 2) bit are required to
represent yk with the two-complement notation. For such
operation the result and one operand must be represented
with ny bit while the other operand, i.e. the elementary
product, is encoded by 1 bit;

3. multiplication Hk = yk× yk: such operation involves two
integral operands contained in the interval value [-N,N].
Binary coding of Hk with the two-complement notation thus
requires nH = (2log2N+2) bits. The operator receives one
operand with ny bit and produces a result with nH bit;

4. accumulation of the Hk values: it is easy to verify that

is less than N∑ =

N

k kH
1

3 so, in order to perform correctly

the accumulation, the accumulated results must be
represented with n+ = (3log2N) bits. The operator receives
two operands encoded through nH bit and produces a result
with n+ bit.
A detailed evaluation of specific operations involved in the

calculation of eq. (2) shows that na = N(N-1)/2 operations of type
1), nb = N(N-3)/2 operations of type 2), nc = N operations of type
3) and nd = (N-1) operations of type 4) are needed.

H(s) computation is thus dominated by very simple
operations, requiring O(N2) elementary products and O(N2)
summations of short integer values: such operations are the worse

efficiently implemented on standard processor. This results in a
severe waste of the processor/memory resources. Let us define the
ratio ηB between the effective number of bits transferred to/from
the memory to compute eq.(2) and the number of bits which
would have been transferred if the length of the operands was
compliant with the maximal length allowed by the system bus.

In order to compute ηB we note that:
− operation of type 1) is executed na times, thus causing the

loading of 2na 1-bit operands and the storing of na 1-bit
operands; this causes an I/O traffic of 3na bits against the
maximum I/O traffic allowed, in the same number of bus
cycles, which is of 3naW bits, being W the width of the
processor data bus;

− operation of type 2) is executed nb times, thus causing the
loading of nb 1-bit operands, that of ny-bit nb operands and
the storing of ny-bit nb operands; this produces an I/O traffic
of 2nbny + nb bit against the maximum I/O traffic allowed, in
the same number of bus cycles, which is of 3nbW bits;

− operation of type 3) is executed nc times, thus causing the
loading of ny-bit nc operands and the storing of nH-bit nb
operands; this causes an I/O traffic of nc(ny + nH) bits against
the maximum I/O traffic allowed, in the same number of bus
cycles, which is of 2ncW bits;

− operation of type 4) is executed nd times, thus causing the
loading of 2nd operands encoded through nH bit and the
storing of nd operands of n+ bit; this causes an I/O traffic of
2ndnH + nbn+ bits against the maximum I/O traffic allowed, in
the same number of bus cycles, which is of 30dW bits.

We define the effective amount ET of data transferred as

ET = 3na + nb(1 + 2ny) + nc(ny + nH) + nd(2nH + n+) (4)

and the the maximum theoretical allowed data transferred (TT), as
TT = 3naW + 3nbW + 2ncW + 3ndW (5)

If we set l = log2N, the two previous equations turn out to be

ET = N2(4+l) + N(3l + 32l -2l + l/2)
- 3l - 22l - 4 (6)

and

TT = (3N2 – N - 3)W (7)

If we fix N = 512 and W = 64 (the typical bus width), the
resulting efficiency is ηB = ET/TT = 0.068, i.e. we use less than 7
percent of the bandwidth of the processor. Indeed, we could
thought to a more efficient algorithms which use clever coding to
reach a better exploitation of the memory bandwidth. Also in this
case, processor utilization remains low because conventional
processors are not able to control, in a flexible way, the bit-level
parallelism. For example, as we will explain later, in LABS
problem N-string characters can be encoded within a word of
length N, thus allowing to load N-string elements in a memory
cycle; furthermore N-elementary products can be performed in
parallel through one XOR operations. Unfortunately, N sequential
tests on the word containing the N results of the elementary
products are successively needed. This example can be considered
paradigmatic: when the architecture does not match the type of

parallelism of the given problem, some sequential step must be
introduced thus wasting, due to the Amdhal’s law, the benefits
gained from parallelization of some part of the algorithm. This
explain the results reported in Table 1 which shows that, for most
COTS platforms, the enhancement of the I/O traffic does not
correspond to a substantial increase of the sustained
computational power.

This fact reminds the key ingredient to be achieved for the
mapping of a computation on a computational platform: an
efficient balance between the extent of the I/O traffic and the
computational power allowed by the functional units of the
available CPU.

5. SARE description of the autocorrelation
calculation
According to the SIMPLE syntax, the behavior of the device
dedicated to the computation of H(s) has been specified through
the SIMPLE program shown in Figure 4

Ind[k,i];
Par[N] {N>=1};
Input s[1] {0<=k<=N-1};

Result y;
Result H;

/*Equation 1: y initialization*/
y[]=yInit();
{i=-1,0<=k<=N-1};

/*Equation 2: y computation */
y[]=yComp(y[k,i-1],s[i],s[i+k]);
{0<=k<=N-1,0<=i<=N-k-1};

/*Equation 3: y propagation */
y[]=yProp(y[k,i-1]);
{1<=k<=N-1,N-k<=i<=N-1};

/*Equation 4: y power of two */
H[]=yPowerOfTwo(y[k,i-1]);
{0<=k<=N-1,i=N};

/*Equation 5: H accumulation */
H[]=HAcc1(H[k,i-1]);
{k=0,i=N+1};

/*Equation 6: H accumulation */
H[]=HAcc2(H[k,i-1],H[k-1,i]);
{1<=k<=N-1,i=N+1};

/*Write Output */
Write(H[]);
{k=N-1,i=N+1};

Figure 4: Simple code to compute H(s).

where:

− the “indices definition” section specifies the set of indices
used to perform the computations;

− the “parameter definition” section specifies the parameters of
the algorithm along with their validity domain;

− the “input definition” section specifies the input variable x
along with its validity domain;

− the “result definition” section specifies the intermediate/final
result of the algorithm;

− the “output definition” section specifies which of the final
results must be produced by the algorithm as output.

0 1 2 N-1

-1
0
1

N-1
N

1

2

3

4

5

i

k

6

Figure 5: Computing domain for the SARE dedicated to the
H(s) computation. Each domain is labeled with the number of
the corresponding equations.

Equations of the SARE specify how the computations must
be performed in order to achieve the final results. Each equation
is composed by the symbolic definition of the computing function
followed by its validity domain.

(·) ² +0

=

1
±

Control FSMMemory
Interface

FPGA
Control

Input string

Output

FU FU FU FU FU

Figure 6: Pipelined architecture designed to compute H(s)

The SARE algorithm can be represented in the cartesian
space, being specified by a set of computations defined over the
index set. The SARE algorithm of Figure 4 belongs to the two-
dimensional (k,i) space and the shape of the corresponding
computing domain is depicted in Figure 5.

Equation 1 initializes the y variable to 0. Equation 2
performs the computation y(k,i) = y(k,i-1) + x(i)x(i+k). Equation 3
propagates the y values along the i axis, i.e. y(k,i) = y(k,i-1).
Equation 4 performs the computation H(k,i) = [y(k,i-1)]2.

Equations 5 and 6 accumulate the [y(k,i-1)]2 values, i.e.
H(k,i) = H(k-1,i) + H(k,i-1). The result is contained in the variable
H(N-1,N+1).

6. Architecture
We designed the circuit to study the case N = 512. Circuits

implementing the problem for different values of N can be easily
generated since the PHG package can design computational
devices as a function of the input parameters which describe the
size of the problem (like, e.g., the length N of the binary
sequence, see Figure 4). The architecture obtained applying the
PHG to the recurrence equations defining the problem is the
pipelined structure sketched in Figure 6. According to the
notation and the theory introduced in [14], processor-time
coordinates are obtained by using the unimodular transformation

matrix T = . The VHDL source, automatically

produced by the PHG tool, contains nearly 63000 lines of code.
The architecture is composed by 514 Functional Units (FU). The
FU's ranging from 1 to 512 compute eqs.(2-3) (depending on the
time step) in the SIMPLE program of Fig.5. FU 513 computes
eq.(4) and FU 514 computes eqs.(5-6) (accumulation) of the
SIMPLE code. The small boxes are the registers storing the
intermediate results of the algorithm. The computing time of the
whole pipeline structure is 1026 clock cycles. The pipeline is feed
by the string elements received at the Input String port and
broadcasted to all the functional units. Such values are stored in a
local register to allow local reusing. As in the classical linear
pipelining, the output of each FU is sent, through a unitary delay,
to the input of the next FU. Last FU is self-connected in order to
perform the accumulation (along the time dimension). The whole
architecture is controlled by a control FSM which enforces the FU
operation scheduling. The architecture has been designed for
being hosted by a prototyping board (see Fig.7) equipped with:









=








Σ
Λ

10
11

− PCI interface;

− 4 independent 2MB SRAM banks (512K*32);

− 1 Xilinx Virtex XV1000 FPGA.

512K×32
512K×32
512K×32
512K×32

Xilinx
XV1000

Xilinx
XV1000

PCI
IF

PCI
IF

SRAM

HOST
PII

333 MHz

Figure 7: The prototype boards connected to a PCI slot of a
Pentium II computer.

Constrained at the speed grade of the FPGA we used
(XV1000-4), the synthesized design is clocked at a frequency
fclk = 25 MHz. It is worth to note that, once the problem has been
defined through the SIMPLE program, all the steps till the final
hardware design are executed automatically by the PHG, the
VHDL compiler and the standard EDA tools.

Referring to the PT algorithm, the global control flow is
demanded to Pentium II host computer; the pseudo-code is
sketched in Figure 8. Differently from the code in Fig.3, the

iterated execution of MC steps is enclosed in a single procedure
call which triggers the FPGA computation.

input
M replicas of MC
temperature values Ti for each MC

output
x* | f(x*)<= f(x) ∀x generated

begin
for i=1 to M x[i] = random
while not stop_condition
execute HW_MC
for i=1 to M-1 do
swap = false;
if f(x[i+1])<f(x[i]) then
swap = true
else if exp((1/Ti+1-1/Ti)*(f(x[i+1])-f(x[i]))
<random(0,1) then
swap = true

end if
if swap then swap(x[i+1],x[i])
/* x[i] becomes the solution for MC at

temperature Ti+1 and x[i+1] becomes the
solution for MA at temperature Ti*/endfor

endwhile
end

Figure 8: PT pseudo-code with the HW-MC call.

HW_MC
for i=1 to NS
for i=1 to M
x’[i] = GN(x[i])
DO_DMA(HOST2BOARD,x’[i])
START_FPGA
WAIT_FPGA_COMPLETION
DO_DMA(BOARD2HOST,f(x’[i]))
if f(x’) < f(x) then
accept = true

else if exp((f(x)-f(x’))/T) > random(0,1) then
accept = true

end if
if accept then x = x’

end for
end for

end HW_MC

Figure 9: The pseudo-code of the HW-MC routine.

The HW- MC routine (pseudo-code sketched in Fig. 9)
performs the MC cycle demanding to the prototyping board the
computation of H(s). The computation of cost function requires a
sequence of calls to the prototyping board:

− DMA from the host to the board memory in order to
communicate the new string x'[i];

− Computation of the cost function (allotted to the FPGA);

− DMA from the board memory to the host memory of the new
cost function.

7. Results
In order to test the advantages derived from the FPGA based

design, we implemented the PT algorithm as sketched above on
different general-purpose platforms. Moreover we developed two
programs to better fit the architecture of the used microprocessor.
The first code, whose computational kernel is shown in Figure 8,
is based on a straightforward implementation of the
autocorrelation function (2): the elements of the binary string are
integer numbers whose value is 1 or -1.

#define STRING_LENGTH 512

/*Variable declaration*/
...
/* String is a integer array

containing 1 or –1 values*/

H=0;
for (k=0;k<STRING_LENGTH;k++) {

Sum=0;
for (i=0;i<STRING_LENGTH-k;i++)

if (String[i]==String[i+k]) Sum++;
else Sum--;
H+=Sum*Sum;

}

Figure 10: Autocorrelation code with string values
represented as integer numbers.

The second code, whose computational kernel is shown in
Figure 9, is based on a different representation of the binary string
values: the elements of the binary string are coded through bits
following the convention that a bit set to 0 corresponds to -1 and a
bit set to 1 corresponds to 1. In this case a word with 32/64 bit
encodes 32/64 string elements while, in the first code, the same
word encodes only one string element; as a consequence, when a
word is loaded, 32/64 string elements are loaded into the
processor.

Expression (2) is computed through basic bit level
operations: a) comparison between string elements is performed
through the exclusive or (XOR) operator with parallelism degree
fixed by the word length, b) the k-th autocorrelation lag is
computed through a sequence of increment/decrement operations
driven by the masking of the result of the exclusive or operation.
While such a code exploits parallelism at the word level, it suffers
from the large number of shift operations required by the
autocorrelation algorithm and by the sequential analysis of the
XOR result to test whether the i-th character of the first operand
matches the corresponding character of the second operand. This
bit level code runs on 32/64 bit target architectures.

The test processors have been chosen among the most
powerful available in our research center and the results have
been compared with those achieved on the test bed architecture
equipped with a 333 MHz Pentium II processor connected to a
Xilinx XV1000 FPGA configured to support the pipelined
architecture in Fig.6.

For all the tests we performed, we used the standard
processor intruction set. No tests have been performed using
special instruction sets like the MMX, VIS, etc.

#define WORD_LENGTH 32 /*or 64*/
#define STRING_LENGTH 512
#define WORD_NUMBER (STRING_LENGTH/WORD_LENGTH)

/*Variable declaration*/
...
/* Mask[k]=2**k for k=0,...,WORD_LENGTH-1*/
/* String1 and String2 are initialized to the

same binary string value */

H=0;
for (i=0;i<STRING_LENGTH;i++) {
Sum=0;
index=i/WORD_LENGTH;
for (j=index;j<WORD_NUMBER;j++) {
/* Begin Computation of lag j of

autocorrelation*/
Aux[j]=String1[j]^String2[j];/*xor operation*/
if (j==index) {
for (k=i%WORD_LENGTH;k<WORD_LENGTH;k++) {
if (Aux[j]&Mask[k]) Sum--;
else Sum++;

}
}
else {
for (k=0;k<WORD_LENGTH;k++) {
if (Aux[j]&Mask[k]) Sum--;
else Sum++;

}
}
/* End of computation of lag j of

autocorrelation*/
}
H+=Sum*Sum;
/*Shift String2 up of 1 bit*/
for (j=WORD_LENGTH-1;j>index;j--) {
String2[j]>>=1;
String2[j]+=(String2[j-1]&1)<<(WORD_LENGTH-1);

}
String2[index]>>=1;

}

Figure 11: Autocorrelation code with string values
represented at bit level.

The architectures used in the tests are:

− 333 MHz Pentium II (the same used in the test bed
architecture) , MS Visual Studio 6.0 C++ compiler. This
processor is quite old and it has been chosen to show the
speedup achieved when the same processor is combined with
the FPGA;

− 1000 MHz Pentium III, 32 bit architecture, 512K of L2
cache, Windows 2000 OS, MS Visual Studio C++ compiler
V6.0;

− 667 MHz Alpha EV6.7 (API UP2000 board), 64 bit
architecture, 4M of L2 cache, Linux OS Kernel 2.3.14,
Compaq C compiler (ccc) V6.2-506;

− 450 MHz Sun UltraSparc II (Ultra60 workstation), 64 bit
architecture, 4M of L2 cache, Solaris 2.7 OS, Sun WorkShop
C compiler V5.0;

− 300 MHz SGI Onyx R12000, 64 bit architecture, 4M of L2
cache, Irix64 6.5 OS, MIPSpro C compiler V7.3.1.1m;

− 200 MHz IBM Power3, 64 bit architecture, 4M of L2 cache,
AIX 4 OS, C for AIX compiler V4.4;

− 300 MHz Cray SV1 Node, 64 bit vector architecture, 256K
L2 cache, Cray UNICOS OS, Cray standard c compiler
V6.3.0.0 (the cray C compiler has been used with the option
-Oscalar3,vector3 in order to vectorize the code).

We report for each system:

a) the time, in milliseconds, required to perform 16 MC
computations with the two kinds of code and, where
applicable, results for the bit level code are split between the
32 and 64 bit version;

b) the maximum and minimum speedup of the FPGA based
architecture vs. each test architecture.

Table 1: Elapsed times (milliseconds) of the test case with
N=512, M=16 and NS=2048 on the different platforms (clock
frequencies in parentheses). The last column shows the
minimum and maximum speed-up values achieved by the
FPGA-based implementation with respect to the specific
platform.

 Integer Bit Level
(32 bit)

Bit Level
(64 bit)

Min/Max
FPGA Speed up

PII(333)+FPGA 3524 - - 1/1

EV6.7 (667) 25213 24422 23155 6.6/7.2

PIII (1000) 53067 30314 - 8.6/15.2

R12000 (300) 35117 43965 40913 10./12.4

SV1 (300) 36966 58870 - 10.5/16.7

Power3 (200) 81345 41834 - 11.8/23

UltraSparc (450) 59080 69171 75217 16.8/21.3

PII (333) 161981 89408 - 23.4/46

Time reported for the FPGA based architecture is 3524 ms.
This time includes: Pentium II control overhead (152 ms), DMA
from host main memory to FPGA local SRAM (2030 ms) and
FPGA computation (1342 ms). Pentium II control overhead is
given by the time to verify the MC acceptance condition, to
perform the PT swap and to manage the whole iterative control
flow. The time spent in the DMA operation includes NS transfers
of M binary strings from the host memory to the FPGA SRAM
and NS transfers of M integer values, i.e. H(s) values, from the
FPGA SRAM to the host memory. Finally FPGA computation is
the time spent by the FPGA to compute NS×M times expression
H(s) value.

Referring to data reported in Table 1, we see that the FPGA
based solution is always considerably faster than the ones based
on COTS with speed up ranging from 6.6 (EV6.7 running the
code in Figure 9 with WORD_LENGTH = 64) up to 23 (Power3
running the code in figure 8); we obviously have neglected the PII
case. May be interesting to note that not all the architectures are

able to take advantage from the exploitation of the word level
parallelism.

8. CONCLUSIONS
The results of this work enforces our view that dedicated

hardware devices can be a key issue to deal with computational
problems which cannot be efficiently mapped on the architectures
of conventional, general-purpose processors. The specific
solution, produced by the PHG package for the LABS problem,
highlights the role and the effect arising from a joint use of a
COTS platform and a specifically designed architecture. In
particular, it emphasizes that a more efficient use of the I/O
bandwidth, together with the presence of a large number of
parallel functional units able to process the input data, allows to
produce large sustained computational power also in the presence
of the low clock speed of the device.

Using previous results based on parallelization of algorithm
expressed trough the SARE model, we discussed the use of
dedicated device to efficiently support the LABS problem
solution. Experimental results derived from tests on both a
prototype architecture, equipped with a board mounting XV1000
Xilinx FPGA configured to support LABS computation and some
commercial systems based on COTS processors, clearly
demonstrates the advantages, in terms of sustained performance,
which can be achieved when, to COTS processors, is added a
device with internal parallel architecture which matches the type
of parallelism of the computationally-intensive part of the
algorithm. We stress that the same approach based on
heterogeneous architecture can be effectively used whenever a
computationally intensive problem a) involves operations not
efficiently supported by COTS processors, b) under-uses
processor bandwidth, c) includes an heavy computational kernel
which can be mapped onto a parallel architecture embeddable
within a programmable device, d) communications between such
a computational kernel and the remaining part of the algorithm
has a complexity smaller than that of the computational kernel.

9. REFERENCES
[1] Special Issues of the Computer Physics Communication

Journal on “Formal Methods for HW/SW design for Grand
Challenge Scientific Applications” - Guest Editors
P.Palazzari, V.Rosato - to appear in 2001.

[2] Hillis, W. Daniel. “The Connection Machine”, MIT Press,
Cambridge, MA., 1985

[3] Cray SV1 Application Optimization Guide (downloadable
from http://www.cray.com/swpubs/manuals/S-2312-36/html-
S-2312-36/)

[4] A.Marongiu, "Hardware and Software High Level Synthesis
of Affine Iterative Algorithms", Ph.D Thesis in Electronic
Engineering, "La Sapienza" University of Rome, February
2000.

[5] Proc. of the 7th Reconfigurable Architectures Workshop
(RAW 2000), 1 May 2000, Cancun, Mexico

[6] IEEE Trans on Computer, Special Issue on Configurable
Computing, 48 (1999)

[7] C.R. Rupp, M. Landguth, T. Garverick, E. Gomersall, H.
Holt, J.M. Arnold, and M. Gokhale: 'The NAPA Adaptive
Processing Architecture', Proceedings of the IEEE
Symposium on FPGAs for Custom Computing Machines, 15
- 17 April, 1998, Napa Valley, California

[8] M.B. Gokhale and J.M. Stone: 'NAPA C: Compiling for a
Hybrid RISC/FPGA Architecture', Proceedings of the IEEE
Symposium on FPGAs for Custom Computing Machines, 15
- 17 April, 1998, Napa Valley, California

[9] [RecRef] Katherine Compton, Scott Hauck: 'Configurable
Computing: A Survey of Systems and Software'. Tech.
Report from the Northwestern University, Dept. of ECE,
1999

[10] P.Palazzari, L.Arcipiani, M.Celino, R. Guadagni,
A.Marongiu, A.Mathis, P.Novelli, V.Rosato “Heterogeneity
as Key Feature of High Performance Computing: the PQE1
Prototype”, Proceedings of "Heterogeneous Computing
Workshop", Cancun, Mexico - May 1, 2000.

[11] E.Marinari, G.Parisi, F.Ritort, "Replica Field Theory for
Deterministic Models: Binary Sequences with Low
Autocorrelation", J. Phys. A: Math. Gen. 27 (1994) 7615.

[12] F.Ferreira, J.Fontanari, P.Stadler, "Landscape statistics of the
low-autocorrelation binary string problem", J. Phys. A:
Math. Gen. 33 (2000) 8635.

[13] B. Militzer, M. Zamparelli, D. Beule, "Evolutionary search
for low--autocorrelation binary sequences", IEEE Trans. on
Evol. Comp., 2 (1998) 34.

[14] A.Marongiu, P.Palazzari, "Automatic Mapping of System of
Affine Recurrence Equations (SARE) onto Distributed
Memory Parallel Systems", IEEE Trans on Soft. Eng., 26
(2000) 262.

[15] IEEE standard VHDL language reference manual. IEEE std.
1076-1993

[16] C.Mongenet, P.Clauss, G.R.Perrin, "Geometrical Tools to
Map System of Affine Recurrence Equations on Regular
Arrays", Acta Informatica, 31 (1994) 137.

[17] K.H.Zimmermann, "Linear Mapping of n-dimensional
Uniform Recurrences onto k-dimensional Systolic Arrays",
Journal of VLSI Signal Processing, 12 (1996) 187.

[18] A.Darte, "Regular Partitioning for Synthesizing Fixed-Size
Systolic Arrays", INTEGRATION, The VLSI Jounal, 12
(1991) 293.

[19] A. Marongiu, P. Palazzari, L. Cinque and F. Mastronardo,
"High Level Software Synthesis of Affine Iterative
Algorithms onto Parallel Architectures". Proc.of the 8th Int.
Conf. on High Performance Computing and Networking
Europe (HPCN Europe 2000). May 2000 Amsterdam, The
Netherlands.

[20] A. Marongiu, P. Palazzari, "Optimization of Automatically
Generated Parallel Programs", Proc of the 3rd IMACS
International Multiconference on Circuits, Systems,
Communications and Computers (CSCC'99) - July 1999,
Athens.

[21] D.E.Goldberg, "Genetic Algorithms in search, optimization
and machine learning" - Addison Wesley 1989.

[22] S.Kirkpatrick, C.Gelatt, M.Vecchi, "Optimization by
Simulated Annealing", Science, 220 (1983) 498.

[23] A.Deckers, E.Aarts, "Global Optimization and Simulated
Annealing", Mathematical Programming, 50 (1991) 367.

[24] E.Marinari, G.Parisi, "Simulated Tempering: A New Monte
Carlo Scheme", Europhysics Letters, 19 (1992) 451.

[25] J. D. McCalpin, "Memory bandwidth and machine balance in
current high-performance computers", Newsletters of the
IEEE Technical Committee on Computer Architecture,
December 1995.

	INTRODUCTION
	The PHG package
	The Low Auto-Correlation Binary String Problem and the Parallel Tempering Optimization Strategy.
	Rationale to develop specialized HW to solve the LABS problem
	SARE description of the autocorrelation calculation
	Architecture
	Results
	CONCLUSIONS
	REFERENCES

