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ABSTRACT 
We describe a design methodology which allows a fast design and 
prototyping of dedicated hardware devices to be used in 
heterogeneous computations. The platforms used in 
heterogeneous computations consist of a general-purpose COTS 
architecture which hosts a dedicated hardware device; parts of the 
computation are mapped onto the former, parts onto the latter, in a 
way to improve the overall computation efficiency. We report the 
design and the prototyping of a FPGA-based hardware board to be 
used in the search of low-autocorrelation binary sequences. The 
circuit has been designed by using a recently developed Parallel 
Hardware Generator (PHG) package which produces a 
synthesizable VHDL code starting from the specific algorithm 
expressed as a System of Affine Recurrence Equations (SARE). 
The performance of the realized devices has been compared to 
those obtained on the same numerical application on several 
computational platforms. 

General Terms 
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Keywords 
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1. INTRODUCTION 
Processors used in general purpose platforms are suitably 

designed to efficiently execute 32/64 bit floating/fixed point 
numerical operations and contain complex memory hierarchies to 
hide the large memory latency. General purpose commodity-off-
the-shelf (COTS) architectures are often deployed with a very low 
efficiency when the computation does not involve standard 
numerical operations, as in the case of 1-bit computations or 
string processing. Functional units and data bus bandwidth are not 

fully exploited due to the execution of simple operations 
involving not standard numerical (or character) data represented 
with few bits. The partial inadequacy of COTS platforms to 
sustain high computational efficiency on specific class of 
applications has fostered a renewed interest in the design of 
dedicated hardware devices, purposely realized to cope with the 
algorithmic complexity inherent to the cited classes of numerical 
processing [1].  A pioneering example of this approach was given 
by the Connection Machine CM-1[2], a MPP SIMD system based 
on 1-bit processors, which had very high efficiency on image 
processing and, conversely, very poor performance on numerical 
processing. In order to combine efficiency on both the numerical 
and not-numerical applications, some platforms use COTS 
processors boosted by custom chips. The same architectural 
approach, at the chip level, has been followed by the Cray SV1 
designers which embedded, within the microprocessor core, both 
a vector floating point unit and a Bit Matrix Multiply (BMM) unit 
devoted to perform some basic bit level matrix operations [3]. 

We propose a more general approach where we attempt to 
increase the computational efficiency of the architectures in the 
tasks where COTS components fail to achieve acceptable 
sustained performances. We have thus introduced a novel 
methodology [4] for rapidly designing and prototyping dedicated 
hardware devices which realize specific computational tasks and 
can be easily linked to COTS platforms. The result of such 
assembly is an heterogeneous architecture composed by a COTS 
platform linked to one or more dedicated hardware devices. The 
computational codes running on heterogeneous platform are thus 
composed of an usual software part and one (or more) sections 
which are directly mapped on the dedicated devices. In order to 
produce, at reasonable costs, a custom dedicated hardware, an 
interesting trade-off between (expensive) custom silicon and 
(cheap) integration of COTS components is given by the FPGA 
(Field Programmable Gate Array) technology. This technology, to 
date, allows to implement complex circuits (up to 2 million logic 
gates) on one chip. These circuits can be designed, simulated and 
prototyped, by using powerful and versatile development tools 
(like, e.g., the Synopsys FPGA Express, the Xilinx Foundation 
Express, the Altera MaxPlusII). They can be hosted, as dedicated 
computational booster, by a COTS processor. A further property 
of the FPGA technology is its re-programmability, i.e. the 
possibility of reusing the same hardware support to implement a 
different circuit which performs a different computation. The re-
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configuration operation can be performed in a very short time (of 
the order of tens of milliseconds), thus leading this technology 
suited to host, in the same hardware support, different types of 
specialized calculations [5-6]. 

In order to give a short overview about projects on 
configurable computing, we recall 1) the Cameron Project (see 
http://www.cs.colostate.edu/cameron) in which a framework to 
automatically compile C programs onto programmable devices 
was developed, 2) the NAPA architecture [7] with the NAPA C 
compiler [8] which allows the partitioning of applications 
between fixed instruction processors and configurable 
coprocessors, 3) the DEFACTO project (see 
http://www.isi.edu/asd/defacto/) in which, starting from C or 
MATLAB specifics and using the SUIF compiler 
(http://suif.stanford.edu/) to extract the parallelism from the 
applications, the application is mapped onto a target Hardware 
Description Language which will be compiled onto a 
programmable device. A detailed review on configurable 
computing can be found in [9].  

To date, there is still a relevant gap between the attainable 
performances of COTS and FPGA devices. FPGA's, in fact, are 
still constrained to a clock speed ranging from a few tens up to 
100 MHz. This limitation, however, can be overridden by a wise 
design of the circuit, by exploiting as much as possible the 
parallelism inherent to the specific computation to be mapped. 
The use of dedicated hardware devices is the key ingredient to 
realize heterogeneous architectures for heterogeneous computing 
[10]. In heterogeneous computing, the algorithm is partitioned: a 
part is implemented on a COTS-based architecture with the usual 
high level programming languages, a part allotted to the dedicated 
hardware device(s) performing the part(s) of the algorithm which 
does not fit the COTS architecture. In most cases, the exploitation 
of the algorithm parallelism into the circuit design allows to attain 
remarkable performances. 

In this work we stress the potentiality of our methodology to 
design components for heterogeneous platforms.  As a test-case, 
we present the design of a dedicated hardware device, based on 
the FPGA technology, designed to be used in the optimization 
problem of the search of low-autocorrelation binary sequences 
(LABS) [11-13]. This problem, of relevance in communication 
technology, involves a computationally heavy bit-level processing 
and, as we will show in detail, it is not suited to be efficiently 
mapped onto COTS processors. From the computational point of 
view, this task requires the use of an optimization technique 
where the target function is represented by the sum of the square 
of all the string autocorrelation values. The design of the 
presented device has been automatically generated by using the 
automatic Parallel Hardware Generator (PHG) package [4,14] 
which is able to produce a synthesizable VHDL from the C-code 
specifying the computation. The algorithm to be implemented on 
the special purpose parallel architecture is firstly described in an 
high level language by means of a set of recurrence equations. 
Then, the PHG, based on the high level synthesis methodology 
developed by two of the authors and extensively described in 
[4,14], produces the VHDL code which is subsequently processed 
with usual electronic CAD tools and implemented on the FPGA 
support. The layout of the automatic PHG is briefly recalled in 
Section 2. Section 3 describes the LABS problem. Sections 4 
gives the rationale to use FPGA to implement specialized devices 

in specific computational tasks, Sections 5 and 6 describe the 
hardware design. Section 7 reports the resulting performance and 
a comparison with those arising from the use of state-of-the-art 
COTS processors. 

2. The PHG package 
The automatic Parallel Hardware Generator (PHG) package 

has been developed in ENEA (Italian Agency for New 
Technology, Energy and Environmental studies) by two of the 
authors in the framework of the HADES project  (HArdware 
DEsign for Scientific applications, see, e.g., 
www.enea.it/hpcn/moshpce/hlsynth1e.html). The PHG theoretical 
framework is described in [9] while the detailed theory is reported 
in [4].  
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Figure 1. Layout of the design flow. The PHG package 
contains the SIMPLE compiler, the Allocation and Scheduling 
Module, the VHDL Generator. 

PHG produces a synthesizable VHDL [15] starting from high 
level specifications given by means of a System of Affine 
Recurrence Equations (SARE) [16-18]. The SARE is specified 
through the SIMPLE (Sare IMPLEmentation) language. Details 
on the SIMPLE language can be found in [4,19].  

In order to achieve the final circuit description, PHG 
performs the following steps (figure 1): 

− parsing of the SARE describing the algorithm to be 
implemented through the SIMPLE compiler and generation 
of the intermediate format; 

− automatic extraction of parallelism by allocating and 
scheduling the computations through a processor-time 
mapping [4]. The result of the mapping process is 
represented by an integer unimodular matrix derived through 
an optimization process [20]. This step produces the 
architecture of the system expressed as a set of 
interconnected functional units (data path) managed by a 
control Finite State Machine (FSM) (data path controller) 



which enforces the scheduling; 

− generation of the synthesizable VHDL representing the 
architecture determined in the previous step. 

The VHDL code is then synthesized through the standard 
Electronic Design Automation (EDA) tools. We used the 
Synopsys FPGA compiler II to produce the optimized netlist and 
the Xilinx Foundation Express 3.1 to place and route it into the 
target FPGA). 

3. The Low Auto-Correlation Binary String 
Problem and the Parallel Tempering 
Optimization Strategy. 

Let us refer to binary strings s of length N, namely s = {si} 
(i = 1,2,…,N) defined over the binary alphabet {-1,+1}. The Low 
Auto-Correlation Binary String problem concerns with the search 
of strings characterized by the lowest possible autocorrelation Hk 

 Hk(s) = ∑  (1)   
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for all lags k [11-13]. 

The LABS problem arises from the area of digital 
communication. In fact, LABS's can be used to generate efficient 
codes for error correction and robust procedures for 
communication synchronization. The problem of finding LABS's 
is usually tackled by using an efficient optimization strategy  
which minimizes the cost function obtained by cumulating the 
square of all the autocorrelation lags Hk(s): 
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Due to its complexity, optimization heuristics like Genetic 
Algorithms (GA) [21], Simulated Annealing (SA) [22,23] or 
others are used to minimize H(s). 

We have used, in this work, that proposed by Marinari and 
Parisi [24] (known as "Parallel Tempering", PT hereafter) as it has 
been shown to give better results, in this specific problem, than 
the other heuristics previously cited. Let H(s) indicate the energy 
of the system in the state configuration s. In the SA case, the 
algorithm generates a series of configurations si with a Boltzmann 
probability distribution i.e.  

 p(s) = e  (3) )(sHβ−

where β is the usual Boltzman factor 1/kT. Each time that the T 
value is changed the system is driven out of equilibrium. With a 
usual Monte Carlo (MC) scheme, the system is brought all along 
the configuration space; high T moves allow the system to take 
over energy barriers. When the system is brought back to T = 0, 
the system should, in principle, visit the local minimum 
configuration. The repeated application of the Monte Carlo 
sampling will allow the system to visit several local minima. 
From the algorithmic point of view, the MC search is performed 
by generating a new point x'∈Xn (Xn being the search space) via 
the perturbing function GN(x) which receives a point x∈Xn and 

returns the new point close (according to some predefined metric) 
to x. The pseudo-code for the Monte Carlo algorithm is shown in 
figure 2, where NS - the number of transitions attempted - is a 
linearly increasing function of the cardinality of the searching 
space. 

/* Monte Carlo cycle at temperature T, MC(T) */
for i=1 to NS
x’ = GN(x)
accept = false
if f(x’) < f(x) then
accept = true

else if exp((f(x)-f(x’))/T) > random(0,1) then
accept = true

end if
if accept then x = x’

end for
/*end of Monte Carlo cycle at temp. T, MC(T)*/

 
Figure 2: Schematic layout of the code describing a Monte 
Carlo Sampling. 

 

input
M replicas of MC
temperature values Ti for each MC

output
x* | f(x*)<= f(x) ∀x generated

begin
for i=1 to M x[i] = random
while not stop_condition
for i=1 to M execute MC(Ti)
for i=1 to M-1 do
swap = false;
if f(x[i+1])<f(x[i]) then
swap = true

else if exp((1/Ti+1-1/Ti)*(f(x[i+1])-f(x[i]))
<random(0,1) then

swap = true
end if
if swap then swap(x[i+1],x[i])
/* x[i] becomes the solution for MC

at temperature Ti+1 and x[i+1] becomes
the solution for MA at temperature Ti*/endfor

endwhile
end

 
Figure 3: Pseudo-code of the PT algorithm. 

PT algorithm is based on a set of M replicas of MC cycles at 
different temperatures. The number of temperatures and their 
values Ti are chosen, as described in [11], so that: 

− all the solutions x have a significant probability to be 
generated at least in one MC replica, i.e. 
∀ x ∈ Xn ∃ Ti | P(f(x),Ti) > pT, being P(f(x),Ti) the Boltzman 
distribution at temperature Ti and pT a threshold probability. 
The previous condition implies that the temperature ranges 
from T = 0 to T = ∞; 

− given two successive temperatures Ti and Ti+1, there is a 
significant number of solutions for which the above 
expression holds for both the temperatures; this implies that 



the replica temperatures should display significant 
superposition in the probability distribution of the 
corresponding states. 

The pseudo-code of the PT algorithm is shown in figure 3. 

4. Rationale to develop specialized HW to 
solve the LABS problem 

Performances of general purpose processors are usually 
limited by the sustainable memory bandwidth as processors are 
getting faster more quickly than the access rate to memory [25]. 
This produces a reduction of the available theoretical CPU 
performances being the memory bandwidth of the system the 
rate-limiting step. A processor able to sustain NI 
instructions/second can sustain such a computational speed if and 
only if the memory is fast enough to supply the requested 
operands and to store the produced results. In such a case, the 
memory bandwidth constitutes the rate-limiting factor for an 
efficient utilization of the computing resources. In fact, due to the 
technological trend of microprocessors architectures, poor 
utilization of memory bandwidth generates a severe under-use of 
computational resources: the more memory bandwidth is wasted, 
the worst is the global processor utilization. This is just the case 
of the LABS problem, which we will discuss in some details. 

Let us consider the system bus traffic generated by the 
algorithm which computes eq.(2). It is possible to recognize four 
types of operations: 

1. multiplication of two string elements si and si+k (elementary 
product): in such a case the operands are represented with 1 
bit;  

2. accumulation of the elementary products yk = : 

in such a case, the result y
∑ −

= +
kN

i kii ss
1

k is contained in the interval 
[-N,N]. Therefore ny = (log2N + 2) bit are required to 
represent yk with the two-complement notation. For such 
operation the result and one operand must be represented 
with ny bit while the other operand, i.e. the elementary 
product, is encoded by 1 bit; 

3. multiplication Hk = yk× yk: such operation involves two 
integral operands contained in the interval value [-N,N]. 
Binary coding of Hk with the two-complement notation thus 
requires nH = (2log2N+2) bits. The operator receives one 
operand with ny bit and produces a result with nH bit; 

4. accumulation of the Hk values: it is easy to verify that 

is less than N∑ =

N

k kH
1

3 so, in order to perform correctly 

the accumulation, the accumulated results must be 
represented with n+ = (3log2N) bits.  The operator receives 
two operands encoded through nH bit and produces a result 
with n+ bit. 
A detailed evaluation of specific operations involved in the 

calculation of eq. (2) shows that na = N(N-1)/2 operations of type 
1), nb = N(N-3)/2 operations of type 2), nc = N operations of type 
3) and nd = (N-1) operations of type 4) are needed. 

H(s) computation is thus dominated by very simple 
operations, requiring O(N2) elementary products and O(N2) 
summations of short integer values: such operations are the worse 

efficiently implemented on standard processor. This results in a 
severe waste of the processor/memory resources. Let us define the 
ratio ηB between the effective number of bits transferred to/from 
the memory to compute eq.(2) and the number of bits which 
would have been transferred if the length of the operands was 
compliant with the maximal length allowed by the system bus. 

In order to compute ηB we note that: 
− operation of type 1) is executed na times, thus causing the 

loading of 2na 1-bit operands and the storing of na 1-bit 
operands; this causes an I/O traffic of 3na bits against the 
maximum I/O traffic allowed, in the same number of bus 
cycles, which is of 3naW bits, being W the width of the 
processor data bus;  

− operation of type 2) is executed nb times, thus causing the 
loading of nb 1-bit operands, that of ny-bit nb operands and 
the storing of ny-bit nb operands; this produces an I/O traffic 
of 2nbny + nb bit against the maximum I/O traffic allowed, in 
the same number of bus cycles, which is of 3nbW bits;  

− operation of type 3) is executed nc times, thus causing the 
loading of ny-bit nc operands and the storing of nH-bit nb 
operands; this causes an I/O traffic of nc(ny + nH) bits against  
the maximum I/O traffic allowed, in the same number of bus 
cycles, which is of 2ncW bits; 

− operation of type 4) is executed nd times, thus causing the 
loading of 2nd  operands encoded through nH bit and the 
storing of nd operands of n+ bit; this causes an I/O traffic of 
2ndnH + nbn+ bits against the maximum I/O traffic allowed, in 
the same number of bus cycles, which is of 30dW bits. 
 
We define the effective amount ET of data transferred as 
 

ET = 3na + nb(1 + 2ny) + nc(ny + nH) + nd(2nH + n+) (4) 
 

and the the maximum theoretical allowed data transferred (TT), as 
TT = 3naW + 3nbW + 2ncW + 3ndW (5) 
 
If we set l = log2N, the two previous equations turn out to be 
 

ET = N2(4+l) + N(3l + 32l -2l + l/2) 
- 3l - 22l - 4 (6) 

 
and 

TT = (3N2 – N - 3)W (7) 
 

If we fix N = 512 and W = 64 (the typical bus width), the 
resulting efficiency is ηB = ET/TT = 0.068, i.e. we use less than 7 
percent of the bandwidth of the processor. Indeed, we could 
thought to a more efficient algorithms which use clever coding to 
reach a better exploitation of the memory bandwidth. Also in this 
case, processor utilization remains low because conventional 
processors are not able to control, in a flexible way, the bit-level 
parallelism. For example, as we will explain later, in LABS 
problem N-string characters can be encoded within a word of 
length N, thus allowing to load N-string elements in a memory 
cycle; furthermore N-elementary products can be performed in 
parallel through one XOR operations. Unfortunately, N sequential 
tests on the word containing the N results of the elementary 
products are successively needed. This example can be considered 
paradigmatic: when the architecture does not match the type of 



parallelism of the given problem, some sequential step must be 
introduced thus wasting, due to the Amdhal’s law, the benefits 
gained from parallelization of some part of the algorithm. This 
explain the results reported in Table 1 which shows that, for most 
COTS platforms, the enhancement of the I/O traffic does not 
correspond to a substantial increase of the sustained 
computational power.  

This fact reminds the key ingredient to be achieved for the 
mapping of a computation on a computational platform: an 
efficient balance between the extent of the I/O traffic and the  
computational power allowed by the functional units of the 
available CPU. 

5. SARE description of the autocorrelation 
calculation 
According to the SIMPLE syntax, the behavior of the device 
dedicated to the computation of H(s) has been specified through 
the SIMPLE program shown in Figure 4 

Ind[k,i];
Par[N] {N>=1};
Input s[1] {0<=k<=N-1};

Result y;
Result H;

/*Equation 1: y initialization*/
y[]=yInit();
{i=-1,0<=k<=N-1};

/*Equation 2: y computation   */
y[]=yComp(y[k,i-1],s[i],s[i+k]);
{0<=k<=N-1,0<=i<=N-k-1};

/*Equation 3: y propagation   */
y[]=yProp(y[k,i-1]);
{1<=k<=N-1,N-k<=i<=N-1};

/*Equation 4: y power of two  */
H[]=yPowerOfTwo(y[k,i-1]);
{0<=k<=N-1,i=N};

/*Equation 5: H accumulation  */
H[]=HAcc1(H[k,i-1]);
{k=0,i=N+1};

/*Equation 6: H accumulation  */
H[]=HAcc2(H[k,i-1],H[k-1,i]);
{1<=k<=N-1,i=N+1};

/*Write Output                */
Write(H[]);
{k=N-1,i=N+1};

 
Figure 4: Simple code to compute H(s). 

where: 

− the “indices definition” section specifies the set of indices 
used to perform the computations; 

− the “parameter definition” section specifies the parameters of 
the algorithm along with their validity domain; 

− the “input definition” section specifies the input variable x 
along with its validity domain; 

− the “result definition” section specifies the intermediate/final 
result of the algorithm; 

− the “output definition” section specifies which of the final 
results must be produced by the algorithm as output. 
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Figure 5: Computing domain for the SARE dedicated to the 
H(s) computation. Each domain is labeled with the number of 
the corresponding equations. 

Equations of the SARE specify how the computations must 
be performed in order to achieve the final results. Each equation 
is composed by the symbolic definition of the computing function 
followed by its validity domain. 
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Figure 6: Pipelined architecture designed to compute H(s) 

The SARE algorithm can be represented in the cartesian 
space, being specified by a set of computations defined over the 
index set. The SARE algorithm of Figure 4 belongs to the two-
dimensional (k,i) space and the shape of the corresponding 
computing domain is depicted in Figure 5. 

Equation 1 initializes the y variable to 0. Equation 2 
performs the computation y(k,i) = y(k,i-1) + x(i)x(i+k). Equation 3 
propagates the y values along the i axis, i.e. y(k,i) = y(k,i-1). 
Equation 4 performs the computation H(k,i) = [y(k,i-1)]2. 



Equations 5 and 6 accumulate the [y(k,i-1)]2 values, i.e. 
H(k,i) = H(k-1,i) + H(k,i-1). The result is contained in the variable 
H(N-1,N+1). 

6. Architecture 
We designed the circuit to study the case N = 512. Circuits 

implementing the problem for different values of N can be easily 
generated since the PHG package can design computational 
devices as a function of the input parameters which describe the 
size of the problem (like, e.g., the length N of the binary 
sequence, see Figure 4). The architecture obtained applying the 
PHG to the recurrence equations defining the problem is the 
pipelined structure sketched in Figure 6. According to the 
notation and the theory introduced in [14], processor-time 
coordinates are obtained by using the unimodular transformation 

matrix T = . The VHDL source, automatically 

produced by the PHG tool, contains nearly 63000 lines of code. 
The architecture is composed by 514 Functional Units (FU). The 
FU's ranging from 1 to 512 compute eqs.(2-3) (depending on the 
time step) in the SIMPLE program of Fig.5. FU 513 computes 
eq.(4) and FU 514 computes eqs.(5-6) (accumulation) of the 
SIMPLE code.  The small boxes are the registers storing the 
intermediate results of the algorithm. The computing time of the  
whole pipeline structure is 1026 clock cycles. The pipeline is feed 
by the string elements received at the Input String port and 
broadcasted to all the functional units. Such values are stored in a 
local register  to allow local reusing. As in the classical linear 
pipelining, the output of each FU is sent, through a unitary delay, 
to  the input of the next FU. Last FU is self-connected in order to 
perform the accumulation (along the time dimension). The whole 
architecture is controlled by a control FSM which enforces the FU 
operation scheduling. The architecture has been designed for 
being hosted by a prototyping board (see Fig.7) equipped with: 
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− PCI interface; 

− 4 independent 2MB SRAM banks (512K*32); 

− 1 Xilinx Virtex XV1000 FPGA. 
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Figure 7: The prototype boards connected to a PCI slot of a 
Pentium II computer.  

Constrained at the speed grade of the FPGA we used 
(XV1000-4), the synthesized design is clocked at a frequency 
fclk = 25 MHz. It is worth to note that, once the problem has been 
defined through the SIMPLE program, all the steps till the final 
hardware design are executed automatically by the PHG,  the 
VHDL compiler and the standard EDA tools.  

Referring to the PT algorithm, the global control flow is 
demanded to Pentium II host computer; the pseudo-code is 
sketched in Figure 8. Differently from the code in Fig.3, the 

iterated execution of MC steps is enclosed in a single procedure 
call which triggers the FPGA computation. 

input
M replicas of MC
temperature values Ti for each MC

output
x* | f(x*)<= f(x) ∀x generated

begin
for i=1 to M x[i] = random
while not stop_condition
execute HW_MC
for i=1 to M-1 do
swap = false;
if f(x[i+1])<f(x[i]) then
swap = true
else if exp((1/Ti+1-1/Ti)*(f(x[i+1])-f(x[i]))
<random(0,1) then
swap = true

end if
if swap then swap(x[i+1],x[i]) 
/* x[i] becomes the solution for MC at

temperature Ti+1 and x[i+1] becomes the
solution for MA at temperature Ti*/endfor

endwhile
end

 
Figure 8: PT pseudo-code with the HW-MC call.  

HW_MC
for i=1 to NS
for i=1 to M
x’[i] = GN(x[i])
DO_DMA(HOST2BOARD,x’[i])
START_FPGA
WAIT_FPGA_COMPLETION
DO_DMA(BOARD2HOST,f(x’[i]))
if f(x’) < f(x) then
accept = true

else if exp((f(x)-f(x’))/T) > random(0,1) then
accept = true

end if
if accept then x = x’

end for
end for

end HW_MC
 

Figure 9: The pseudo-code of the HW-MC routine.  

The HW- MC routine (pseudo-code sketched in Fig. 9) 
performs the MC cycle demanding to the prototyping board the 
computation of H(s). The computation of cost function requires a 
sequence of calls to the prototyping board: 

− DMA from the host to the board memory in order to 
communicate the new string x'[i]; 

− Computation of the cost function (allotted to the FPGA); 

− DMA from the board memory to the host memory of the new 
cost function. 

 



7. Results 
In order to test the advantages derived from the FPGA based 

design, we implemented the PT algorithm as sketched above on 
different general-purpose platforms. Moreover we developed two 
programs to better fit the architecture of the used microprocessor. 
The first code, whose computational kernel is shown in Figure 8, 
is based on a straightforward implementation of the 
autocorrelation function (2): the elements of the binary string are 
integer numbers whose value is 1 or -1. 

#define STRING_LENGTH 512

/*Variable declaration*/
...
/* String is a integer array

containing 1 or –1 values*/

H=0;
for (k=0;k<STRING_LENGTH;k++) {

Sum=0;
for (i=0;i<STRING_LENGTH-k;i++)

if (String[i]==String[i+k]) Sum++;
else Sum--;
H+=Sum*Sum;

}
 

Figure 10: Autocorrelation code with string values 
represented  as integer  numbers. 

The second code, whose computational kernel is shown in 
Figure 9, is based on a different representation of the binary string 
values: the elements of the binary string are coded through bits 
following the convention that a bit set to 0 corresponds to -1 and a 
bit set to 1 corresponds to 1. In this case a word with 32/64 bit 
encodes 32/64 string elements while, in the first code, the same 
word encodes only one string element; as a consequence, when a 
word is loaded, 32/64 string elements are loaded into the 
processor. 

Expression (2) is computed through basic bit level 
operations: a) comparison between string elements is performed 
through the exclusive or (XOR) operator with parallelism degree 
fixed by the word length, b) the k-th autocorrelation lag is 
computed through a sequence of increment/decrement operations 
driven by the masking of the result of the exclusive or operation. 
While such a code exploits parallelism at the word level, it suffers 
from the large number of shift operations required by the 
autocorrelation algorithm and by the sequential analysis of the 
XOR result to test whether the i-th character of the first operand 
matches the corresponding character of the second operand. This 
bit level code runs on 32/64 bit target architectures. 

The test processors have been chosen among the most 
powerful available in our research center and the results have 
been compared with those achieved on the test bed architecture 
equipped with a 333 MHz Pentium II processor connected to a 
Xilinx XV1000 FPGA configured to support the pipelined 
architecture in Fig.6. 

For all the tests we performed, we used the standard 
processor intruction set. No tests have been performed using 
special instruction sets like the MMX, VIS, etc. 

#define WORD_LENGTH 32 /*or 64*/
#define STRING_LENGTH 512
#define WORD_NUMBER (STRING_LENGTH/WORD_LENGTH)

/*Variable declaration*/
...
/* Mask[k]=2**k for k=0,...,WORD_LENGTH-1*/
/* String1 and String2 are initialized to the

same binary string value */

H=0;
for (i=0;i<STRING_LENGTH;i++) { 
Sum=0;
index=i/WORD_LENGTH;
for (j=index;j<WORD_NUMBER;j++) {
/* Begin Computation of lag j of

autocorrelation*/
Aux[j]=String1[j]^String2[j];/*xor operation*/
if (j==index) {
for (k=i%WORD_LENGTH;k<WORD_LENGTH;k++) {
if (Aux[j]&Mask[k]) Sum--;
else Sum++;

}
}
else {
for (k=0;k<WORD_LENGTH;k++) {
if (Aux[j]&Mask[k]) Sum--;
else Sum++;

}
}
/* End of computation of lag j of

autocorrelation*/
}
H+=Sum*Sum;
/*Shift String2 up of 1 bit*/
for (j=WORD_LENGTH-1;j>index;j--) {
String2[j]>>=1;
String2[j]+=(String2[j-1]&1)<<(WORD_LENGTH-1);

}
String2[index]>>=1;

}

Figure 11: Autocorrelation code with string values 
represented  at  bit level. 

The architectures used in the tests are: 

− 333 MHz Pentium II (the same used in the test bed 
architecture) , MS Visual Studio 6.0 C++ compiler. This 
processor is quite old and it has been chosen to show the 
speedup achieved when the same processor is combined with 
the FPGA; 

− 1000 MHz Pentium III, 32 bit architecture, 512K of L2 
cache, Windows 2000 OS, MS Visual Studio C++ compiler 
V6.0; 

− 667 MHz Alpha EV6.7 (API UP2000 board), 64 bit 
architecture, 4M of L2 cache, Linux OS Kernel 2.3.14, 
Compaq C compiler (ccc) V6.2-506; 

− 450 MHz Sun UltraSparc II (Ultra60 workstation), 64 bit 
architecture, 4M of L2 cache, Solaris 2.7 OS, Sun WorkShop 
C compiler V5.0; 



− 300 MHz SGI Onyx R12000, 64 bit architecture, 4M of L2 
cache, Irix64 6.5 OS, MIPSpro C compiler V7.3.1.1m; 

− 200 MHz IBM Power3, 64 bit architecture, 4M of L2 cache, 
AIX 4 OS, C for AIX compiler V4.4; 

− 300 MHz Cray SV1 Node, 64 bit vector architecture, 256K 
L2 cache, Cray UNICOS OS, Cray standard c compiler 
V6.3.0.0 (the cray C compiler has been used with the option 
-Oscalar3,vector3 in order to vectorize the code). 

We report for each system: 

a) the time, in milliseconds, required to perform 16 MC 
computations with the two kinds of code and, where 
applicable, results for the bit level code are split between the 
32 and 64 bit version;  

b) the maximum and minimum speedup of the FPGA based 
architecture vs. each test architecture. 

Table 1: Elapsed times (milliseconds) of the test case with 
N=512, M=16 and NS=2048 on the different platforms (clock 
frequencies in parentheses). The last column shows the 
minimum and maximum speed-up values achieved by the 
FPGA-based implementation with respect to the specific 
platform.  

 Integer Bit Level 
(32 bit) 

Bit Level 
(64 bit) 

Min/Max 
FPGA Speed up 

PII(333)+FPGA 3524 - - 1/1 

EV6.7 (667) 25213 24422 23155 6.6/7.2 

PIII (1000) 53067 30314 - 8.6/15.2 

R12000 (300) 35117 43965 40913 10./12.4 

SV1 (300) 36966 58870 - 10.5/16.7 

Power3 (200) 81345 41834 - 11.8/23 

UltraSparc (450) 59080 69171 75217 16.8/21.3 

PII (333) 161981 89408 - 23.4/46 

 

Time reported for the FPGA based architecture is 3524 ms. 
This time includes: Pentium II control overhead (152 ms), DMA 
from host main memory to FPGA local SRAM (2030 ms) and 
FPGA computation (1342 ms). Pentium II control overhead is 
given by the time to verify the MC acceptance condition, to 
perform the PT swap and to manage the whole iterative control 
flow. The time spent in the DMA operation includes NS transfers 
of M binary strings from the host memory to the FPGA SRAM 
and NS transfers of M integer values, i.e. H(s) values, from the 
FPGA SRAM to the host memory. Finally FPGA computation is 
the time spent by the FPGA to compute NS×M times expression 
H(s) value. 

Referring to data reported in Table 1, we see that the FPGA 
based solution is always considerably faster than the ones based 
on COTS with speed up ranging from 6.6 (EV6.7 running the 
code in Figure 9 with WORD_LENGTH = 64) up to 23 (Power3 
running the code in figure 8); we obviously have neglected the PII 
case. May be interesting to note that not all the architectures are 

able to take advantage from the exploitation of the word level 
parallelism. 

8. CONCLUSIONS 
The results of this work enforces our view that dedicated 

hardware devices can be a key issue to deal with computational 
problems which cannot be efficiently mapped on the architectures 
of conventional, general-purpose processors. The specific 
solution, produced by the PHG package for the LABS problem, 
highlights the role and the effect arising from a joint use of a 
COTS platform and a specifically designed architecture. In 
particular, it emphasizes that a more efficient use of the I/O 
bandwidth, together with the presence of a large number of 
parallel functional units able to process the input data, allows to 
produce large sustained computational power also in the presence 
of the low clock speed of the device. 

Using previous results based on parallelization of algorithm 
expressed trough the SARE model, we discussed the use of 
dedicated device to efficiently support the LABS problem 
solution. Experimental results derived from tests on both a 
prototype architecture, equipped with a board mounting XV1000 
Xilinx FPGA configured to support LABS computation and some 
commercial systems based on COTS processors, clearly 
demonstrates the advantages, in terms of sustained performance, 
which can be achieved when, to COTS processors, is added a 
device with internal parallel architecture which matches the type 
of parallelism of the computationally-intensive part of the 
algorithm. We stress that the same approach based on 
heterogeneous architecture can be effectively used whenever a 
computationally intensive problem a) involves operations not 
efficiently supported by COTS processors, b) under-uses 
processor bandwidth, c) includes an heavy computational kernel 
which can be mapped onto a parallel architecture embeddable 
within a programmable device, d) communications between such 
a computational kernel and the remaining part of the algorithm 
has a complexity smaller than that of the computational kernel. 
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